(NON)MEASURABILITY OF *I*-LUZIN SETS Marcin Michalski, marcin.k.michalski@pwr.edu.pl

For reasonable σ -ideal of sets we call a set A an \mathcal{I} -Luzin sets if for every $I \in \mathcal{I}$ we have $|A \cap I| < |A|$. If such a set intersects each Borel \mathcal{I} -positive set on a set of the same cardinality, then we have super \mathcal{I} -Luzin set. Such a notion generalizes classic notion of Luzin sets and Sierpiński sets on the real line (or Euclidean space). We will give necessary and sufficient condition for \mathcal{I} -nomeasurability of \mathcal{I} -Luzin sets and, using the Smital Property (precisely-its weaker version), we will provide an easy way to generate super \mathcal{I} -Luzin sets (\mathcal{I} -Luzin sets that) if only \mathcal{I} -Luzin sets exist. As a final result we shall show that if \mathfrak{c} is a regular cardinal and L is a generalized Luzin set and S- a generalized Sierpiński set, then their algebraic sum L + S belongs to the Marczewski ideal s_0 .